
Experiences with Parallelizing a Bio-informatics
Program on the Cell BE

Hans Vandierendonck, Sean Rul, Michiel Questier, and Koen De Bosschere

Ghent University, Department of Electronics and Information Systems/HiPEAC,
B-9000 Gent, Belgium

{hvdieren,srul,mquestie,kdb}@elis.ugent.be

Abstract. The Cell Broadband Engine Architecture is a new heteroge-
neous multi-core architecture targeted at compute-intensive workloads.
The architecture of the Cell BE has several features that are unique in
high-performance general-purpose processors, such as static instruction
scheduling, extensive support for vectorization, scratch pad memories,
explicit programming of DMAs, mailbox communication, multiple pro-
cessor cores, etc. It is necessary to make explicit use of these features to
obtain high performance. Yet, little work reports on how to apply them
and how much each of them contributes to performance.

This paper presents our experiences with programming the Cell BE ar-
chitecture. Our test application is Clustal W, a bio-informatics program
for multiple sequence alignment. We report on how we apply the unique
features of the Cell BE to Clustal W and how important each is to obtain
high performance. By making extensive use of vectorization and by paral-
lelizing the application across all cores, we speedup the pairwise alignment
phase of Clustal W with a factor of 51.2 over PPU (superscalar) execution.
The progressive alignment phase is sped up by a factor of 5.7 over PPU
execution, resulting in an overall speedup by 9.1.

1 Introduction

Computer architectures are changing: while previous generations of processors
gained performance by increasing clock frequency and instruction-level paral-
lelism, future processor generations are likely to sustain performance improve-
ments by increasing the number of cores on a chip. These performance improve-
ments can, however, only be tapped when applications are parallel. This requires
a large additional effort on the side of the programmer. Furthermore, it is likely
that future multi-core architectures will be heterogeneous multi-cores, i.e., the
chip’s cores have significantly different architectures. This further increases the
programming challenge.

The Cell Broadband Engine Architecture [1] is such a new heterogeneous
multi-core architecture targeted at compute-intensive workloads. The Cell BE
has one superscalar processor (Power processing element) and 8 SIMD syner-
gistic processing elements (SPE). The SPEs have a unique architecture, with
features that are uncommon in high-performance general-purpose processors:

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 161–175, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

162 H. Vandierendonck et al.

static instruction scheduling, scratch pad memories, explicit programming of
DMAs, mailbox communication, a heterogeneous multi-core architecture, etc.
While these features hold promise for high performance, achieving high perfor-
mance is difficult as these features are exposed to the programmer.

In this paper, we implement Clustal W [2], a bio-informatics program, on the
Cell Broadband Engine and report on the optimizations that were necessary to
achieve high performance. Apart from overlapping memory accesses with com-
putation and apart from avoiding branches, we spend a lot of effort to vectorize
code, modify data structures, and to remove unaligned vector memory accesses.
These optimizations increase performance on an SPE. Furthermore, we extract
thread-level parallelism to utilize all 8 SPEs. We report on the impact of each
of these optimizations on program speed.

In the remainder of this paper, we first explain the Cell Broadband Engine
Architecture (Section 2) and the Clustal W application (Section 3). We analyze
Clustal W to find the most time-consuming phases (Section 4). Then, we ex-
plain our optimizations on Clustal W (Section 5) and evaluate the performance
improvements from each (Section 6). Finally, Section 7 discusses related work
and Section 8 concludes the paper.

2 The Cell BE Architecture

The Cell Broadband Engine [1] is a heterogeneous multi-core that is developed by
Sony, Toshiba and IBM. The Cell consists of nine cores: one PowerPC processor
element (PPE) and eight SIMD synergistic processor elements (SPE).1

The PPE serves as a controller for the SPEs and works with a conventional
operating system. It is derived from a 64-bit PowerPC RISC-processor and is
an in-order two-way superscalar core with simultaneous multi-threading. The
instruction set is an extended PowerPC instruction set with SIMD Multimedia
instructions. It uses a cache coherent memory hierarchy with a 32 KB L1 data
and instruction cache and a unified L2 cache of 512 KB.

The eight SPEs [3,4] deliver the compute power of the Cell processor. These
128-bit in-order vector processors distinguish themselves by the use of explicit
memory management. The SPEs each have a local store of 256 KB dedicated for
both data and instructions. The SPE only operates on data in registers which
are read from or written to the local store. Accessing data from the local store
requires a constant latency of 6 cycles as opposed to processors with caches who
have various memory access times due to the underlying memory hierarchy. This
property allows the compiler to statically schedule the instructions for the SPE.
To access data that resides in the main memory or other local stores, the SPE
issues a DMA command. The register file itself has 128 registers each 128-bit
wide allowing SIMD instructions with varying element width (e.g. ranging from

1 The processing units are referred to as the power processing unit (PPU) and syn-
ergistic processing unit (SPU) for the PPE and SPE, respectively. We will use the
terms PPE and PPU, and SPE and SPU, interchangeably.

Experiences with Parallelizing a Bio-informatics Program on the Cell BE 163

2x64-bit up to 16x8-bit). There is no hardware branch predictor in order to
keep the design of the SPE simple. To compensate for this, the programmer or
compiler can add branch hints which notifies the hardware and allows prefetching
the upcoming 32 instructions so that a correctly hinted taken branch incurs no
penalty. Since there is a high branch misprediction penalty of about 18 cycles it
is better to eliminate as much branches as possible. The SIMD select instruction
can avoid branches by turning control flow into data flow.

All nine cores, memory controller and I/O controller are connected through
the Element Interconnect Bus (EIB). The EIB consists of 4 data rings of 16 bytes
wide. The EIB runs at half the frequency of the processor cores and it supports a
peak bandwidth of 204.8 GBytes/s for on chip communication. The bandwidth
between the DMA engine and the EIB bus is 8 bytes per core per cycle in each
direction. Because of the explicit memory management that is required in the
local store one has to carefully schedule DMA operations and strive for total
overlap of memory latency with useful computations.

3 Clustal W

In molecular biology Clustal W [2] is an essential program for the simultaneous
alignment of nucleotide or amino acid sequences. It is also part of Bioperf [5],
an open benchmark suite for evaluating computer architecture on bioinformatics
and life science applications.

The algorithm computes the most likely mutation of one sequence into the
other by iteratively substituting amino acids in the sequences and by introducing
gaps in the sequences. Each modification of the sequences impacts the score of
the sequences, which measures the degree of similarity.

The alignment of two sequences is done by dynamic programming, using the
Smith-Waterman algorithm [6]. This technique, however, does not scale to align-
ing multiple sequences, where finding a global optimum becomes NP-hard [7].
Therefore, a series of pairwise alignments is compared to each other, followed
by a progressive alignment which adds the sequence most closely related to the
already aligned sequences.

The algorithm consists of three stages. In the first stage, all pairs of sequences
are aligned. The second stage forms a phylogenetic tree for the underlying se-
quences. This is achieved by using the Neighbor-Joining algorithm [8] in which
the most closely related sequences, as given by the first stage, are located on the
same branch of the guide tree. The third step progressively aligns the sequences
according to the branching order in the guide tree obtained in the second step,
starting from the leaves of the tree proceeding towards the root.

4 Analysis of Clustal W

Both the space and time complexity of the different stages of the Clustal W
algorithm are influenced by the number of aligned sequences N and the typical
sequence length L. Edgar [9] has computed the space and time complexity of

164 H. Vandierendonck et al.

Table 1. Complexity of Clustal W in time and space, with N the number of sequences
and L the typical sequence length

Stage O(Space) O(Time)
PW: Pairwise calculation N2 + L2 N2L2

GT: Guide tree N2 N4

PA: Progressive alignment NL + L2 N3 + NL2

Total N2 + L2 N4 + L2

each phase in terms of N and L (see Table 1). This theoretical analysis indicates
that the second stage of Clustal W will become more important as the number
of sequences increases, but it is indifferent to the length of these sequences. In
the other stages both the number of sequences and the length are of importance.

The time and space complexity indicate how each phase scales with increasing
problem size, but they does not tell us the absolute amount of time spent in each
phase. In order to understand this, we analyze the program by randomly creating
input sets with preset number of sequences N and sequence length L. Statistical
data of protein databases [10] indicates that the average length of sequences is
366 amino acids, while sequences with more than 2000 amino acids are very rare.
So we randomly created input sets with a sequence length ranging from 10 to
1000 amino acids and with a number of sequences in the same range.

Figure 1 shows the percentage of execution time spent in each stage. Each
bar indicates a certain configuration of the number of sequences (bottom X-
value) and the sequence length (top X-value). The pairwise alignment becomes
the dominant stage when the number of sequences is high, taking responsibility
for more than 50% of execution time when there are at least 50 sequences. In
contrast, when the number of sequences is small, then progressive alignment
takes the larger share of the execution time.

The guide tree only plays an important role when the input set contains a large
number of short sequences. In other cases this stage is only responsible for less
than 5% of the execution time. In a previous study, G-protein coupled receptor

0%

20%

40%

60%

80%

100%

1
0

5
0

1
0
0

5
0

0

1
0
0

0

1
0

5
0

1
0

0

5
0
0

1
0

0
0

1
0

5
0

1
0

0

5
0

0

1
0
0

0

1
0

5
0

1
0

0

5
0

0

1
0
0

0

1
0

5
0

1
0

0

5
0
0

1
0

0
0

N = 10 N = 50 N = 100 N = 500 N = 1000

Number of sequences (lower) & Sequence length (upper)

P
e

rc
e
n

ta
g

e
e

x
e
c

u
ti

o
n

ti
m

e

PA

GT

PW

Fig. 1. Percentage of execution time of the three major stages in Clustal W

Experiences with Parallelizing a Bio-informatics Program on the Cell BE 165

(GPCR) proteins are used as input sets [11]. These proteins are relatively short,
so the guide tree plays a prominent role. A profile analysis of ClustalW-SMP [12]
shows a more important role for the guide tree, but this is the effect of the SMP
version of Clustal W in which both the pairwise and progressive alignment are
parallelized.

The analysis above shows that the pairwise alignment and progressive align-
ment phases are responsible for the largest part of the execution time. In the
remainder of this paper, we focus on optimizing these two phases and pay no
attention to the guide tree phase (which is parallelized in [12]).

5 Optimization of Clustal W

The inner loops of the pairwise alignment and progressive alignment phases have
very similar structure, so most optimizations apply to both phases. We discuss
first how to optimize these phases for the SPUs. Then we turn our attention to
parallelizing these phases to utilize multiple SPUs.

5.1 Optimizing for the SPU

Loop Structure. The majority of work in the PW and the PA phases is performed
by 3 consecutive loop nests. Together, these loop nests compute a metric of
similarity (score) for two sequences. The first loop nest iterates over the sequences
in a forward fashion, i.e., it uses increasing indices for the sequence arrays. We
call this loop the forward loop. The second loop nest iterates over the sequences
in a backward fashion (using decreasing indices for the sequence arrays), so we
call it the backward loop. From a computational point of view, a single iteration
of the forward and the backward loops perform comparable computations. The
third loop nest computes the desired score using intermediate values from the
forward and backward loops (note that in PA the third loop nest also uses
recursion besides iteration).

In both the PW and PA phases, the third loop performs an order of magnitude
less work than the forward and the backward loops, so we do not bother to
optimize the third loop.

In PW, the forward loop is by far more important than the backward loop, as
the forward loop computes reduced limits on the iteration space of the backward
loop. In PA, the forward and the backward loop have the same size of iteration
space. Hence, they take a comparable share in the total execution time.

The forward and backward loop bodies contain a non-vectorizable part. In the
PW loops, these are scattered accesses to a substitution matrix, while in the PA
loops, these involve calls to a function called prfscore(). This structure limits
the speedup achievable by vectorization of the surrounding loops.

We optimize the forward and backward loops using vectorization (SIMD) and
loop unrolling. These optimizations are known to be very effective on the Cell
BE. Before applying them, we must understand the control flow inside the inner
loop bodies as well as the data dependencies between successive loop iterations.

166 H. Vandierendonck et al.

j-loop

i-
lo

o
p

�

�

f, e, s

HH[]j

v
e

c
to

ri
z
e

b
y

4
-l
o

o
p

it
e

ra
ti
o

n
s

i

Fig. 2. Data dependencies between distinct iterations of the inner loop body of two
nested loops

Vectorization of prfscore(). The prfscore() function called from the PA loops
computes a vector dot product. The vector length is input-dependent but it
cannot exceed 32 elements by definition of the data structures. Furthermore, the
vector length remains constant during the whole PA phase.

We completely unroll the loop assuming 32 iterations of the loop and we
perform a 4-way vectorization. This removes all control flow at the cost of code
size increase. To take the loop iteration limit into account, we use the spu sel()
primitive together with a pre-computed mask array. The spu sel() primitive
selects only those words for which the mask contains ones, so it allows us to sum
over only those values that are required.

Control Flow Optimization. The inner loop body of the backward and for-
ward loops contains a significant amount of control flow, related to finding
the maximum of a variable over all loop iterations. In the PW phase, the
code also remembers the i-loop and j-loop iteration numbers where that max-
imum occurs. It is important to avoid this control flow, since mispredicted
branch instructions have a high penalty on the SPUs. Updating the running
maximum value (if(b > a) a=b;) can be simply avoided by using the SPUs
compare and select assembly instructions to turn control flow into data flow
(a=spu sel(a,b,spu cmpgt(b,a));). In the same vein, it is also possible to re-
member the i-loop and j-loop iteration numbers of the maximum
(imax=spu sel(imax,i,spu cmpgt(b,a));).

Vectorization. The forward and backward loops in the PW and PA phases have
the same data dependencies, which are depicted in Figure 2. There are two
nested loops, with the j-loop nested inside the i-loop. Every box in the figure
depicts one execution of the inner loop body corresponding to one pair of i and
j loop indices. The execution of the inner loop body has data dependencies with
previous executions of the inner loop body, as indicated by edges between the
boxes. Data dependencies carry across iterations of the j-loop, in which case
the dependencies are carried through scalar variables. Also, data dependencies
carry across iterations of the i-loop, in which case the dependences are carried

Experiences with Parallelizing a Bio-informatics Program on the Cell BE 167

through arrays indexed by j. Thus, the execution of the inner loop body has
data dependencies with two prior executions of the loop body.

To vectorize the forward and backward loops, we need to identify V data-
independent loop iterations, where V is the vectorization factor. In these loops,
the vectorization factor is 4, since scalar variables are 32-bit integers and the
vector length is 128bits. Data-independent loop iterations occur for skewed iter-
ation counts for the i-loop and the j-loop. In particular, loop iterations (i0, j0)
and (i1, j1) are independent when i0 + j0 = i1 + j1. Consequently, vectoriza-
tion requires the construction of loop pre-ambles and post-ambles to deal with
non-vectorizable portions of the loop body.

The PW forward loop computes the position of the maximum score. The
original code records the “first” loop iteration where the maximum value occurs
(if(b > a){a=b; imax=i; jmax=j;}). Here, the “first” loop iteration is the
one that occurs first in the lexicographic ordering

(i, j) < (i
′
, j

′
) if (i < i

′
) ∨ ((i = i

′
) ∧ (j < j

′
)).

Since vectorization changes the execution order of the loop iterations, we need
to take care that the same loop iteration is recorded in order to obtain the same
output of the algorithm. In the vectorized code, we simultaneously remember 4
positions where the maximum value occurs, each one corresponding to one of
the 4 vector lanes. When the vectorized loop has finished, we need to select the
maximum value among the per-lane maxima and, if that maximum occurs in
multiple lanes, we need to select the appropriate loop iterations corresponding
to the lexicographic ordering in the original code.

Loop Unrolling to Avoid Unaligned Memory Accesses. Loop unrolling can in-
crease performance by increasing the range across which instructions can be
scheduled and by reducing control flow overhead. Loop unrolling is particularly
important for statically scheduled architectures like the SPU. In the case of
Clustal W, however, loop unrolling did not allow the compiler to create a better
instruction schedule as the loop body already contains sufficient instruction-level
parallelism. Thus, performance remains the same.

In this paper, we show that loop unrolling is also useful to enable other op-
timizations, in this case the removal of unaligned memory accesses. Unaligned
memory accesses should be avoided as the hardware supports only aligned mem-
ory accesses. Consequently, unaligned vector loads and stores translate into a
sequence of several instructions.

The interaction of loop unrolling and alignment is illustrated on the HH [·]
array, which is used in the inner loop body (Figure 3). We assume that the
vector covering elements 1 to 4 of the HH [·] array is aligned. This is the optimal
situation since the j-loop starts at index 1.

In the vectorized loops, each loop iteration loads a 4-element vector from
the HH [·] array. Depending on the iteration count, this vector may or may not
be aligned on a natural boundary. Every iteration, the vector moves one scalar
position in the HH [·] array, so the loaded vector is aligned exactly once every
fourth iteration of the loop and it is unaligned in the other iterations.

168 H. Vandierendonck et al.

HH[]j

address HH[1] is
vector-aligned

iteration 0

iteration 1

iteration 2

iteration 3

iteration 4

0 1 2 3 4 5 6 7 8 9

1 unrolled loop
body accesses
2 aligned vectors

Fig. 3. Elements of the intermediary HH [·] array accessed by successive iterations of
the vectorized loop

Four consecutive iterations of the vectorized loop access 7 distinct scalars
from the HH [·] array (Figure 3). These 7 scalars are located in two consecutive
aligned vectors, so it is possible to load them all at once into vector registers
using two aligned loads, and to store them back using two aligned stores. All
further references to the HH [·] array are now redirected to the vector registers
holding the two words. This optimization removes all unaligned memory accesses
to the arrays that carry dependences between iterations of the i-loop. We apply a
similar optimization to the character arrays holding the sequences in the pairwise
alignment phase.

5.2 Modifications to Data Structures

As the local store is not large enough to hold all data structures, we stream all
large data structures in and out of the SPUs. This is true in particular for the
sequence arrays (PW phase) and for the profiles (PA phase). We also carefully
align all datastructures in the local store to improve vectorization.

In the PA phase, we also modify the second profile, which streams through
the SPU most quickly. Each element of the profile is a 64-element vector of 32-
bit integers. This vector is accessed sparsely: the first 32 elements are accessed
sequentially, the next 2 elements are accessed at other locations in the code and
the remainder is unused. To improve memory behavior, we create two new arrays
to store the 32nd and 33rd elements. Accesses to these arrays are optimized in
the same way as to the HH [·] array of the previous paragraph. When streaming
the second profile, only the first 32 elements are fetched.

5.3 Parallelization of Pairwise Alignment

Pairwise alignment computes a score for every pair of sequences. The scores can
be computed independently for all pairs, which makes parallelization trivial. We
dynamically balance the work across the SPUs by dividing the work in N − 1
work packages where N is the number of sequences. The i-th work package

Experiences with Parallelizing a Bio-informatics Program on the Cell BE 169

SPU 0

fo
rw

a
rd

SPU 3

odd
prfscore()

SPU 2

even
prfscore()

SPU 1

b
a

c
k
w

a
rd

th
ir
d

SPU 5

odd
prfscore()

SPU 4

even
prfscore()

Fig. 4. Parallelization of pdiff() on 6 SPUs

corresponds to comparing the i-th sequence to all other sequences j where j > i.
Work packages are sent to SPUs in order of decreasing size to maximize load
balancing.

5.4 Parallelization of Progressive Alignment

Progressive alignment is more difficult to parallelize. Although the forward, back-
ward and third loop nests are executed multiple times, there is little parallelism
between executions of this set of loops. A parallelization scheme similar to the
PW phase is thus not possible. Instead, we note that the first two loop nests are
control- and data-independent. The third loop nests has data-dependencies with
the first two loop nests, but its execution time is several orders of magnitude
smaller. So a first parallelization is to execute the first two loop nests in parallel,
an optimization that is also performed in the SMP version of Clustal W.

A higher degree of parallelization is obtained by observing that most of the
execution time is spent in the prfscore() function. As the control flow through
the loops is entirely independent of the data, we propose to extract DO-ACROSS
parallelism from the loop. Indeed, the prfscore() function can be evaluated
ahead of time as it is independent of the remainder of the computation. As the
prfscore() function takes a significant amount of time, we reserve two threads
to evaluate this function, each handling different values.

Thus, we instantiate three copies of the loop (Figure 4). Two copies compute
each a subset of the prfscore()s and send these values to the third copy through
a queue. The third copy of the loop performs the remaining computations and
reads the results of the prfscore()s from the queue. As control flow is highly
predictable, it is easy to divise a static distribution of work, such that each copy
of the loop can proceed with minimum communication. The only communication
is concerned with reading and writing the queue.

In total, a single call to pdiff() is executed by 6 SPU threads: one for the
forward loop, one for the backward and third loop, two threads to deal with
the prfscore()s for the forward loop and two more threads to deal with the
prfscore()s for the backward loop.

170 H. Vandierendonck et al.

6 Evaluation

We separately evaluate the effect of each optimization on Clustal W to under-
stand the relative importance of each optimization. Hereto, we created distinct
versions of Clustal W, with each one building upon the previous version and
adding optimizations to it. The baseline version of Clustal W is taken from the
BioPerf benchmark suite [5]. The programs are run with the B input from the
same benchmark suite. We present results only for one input set, as distinct in-
put sets assign different importance to each of the phases, but the performance
of each phase scales similarly across input sets.

We evaluate the performance of each of our versions of Clustal W by running
it on a Dual Cell BE-based blade, with two Cell Broadband Engine processors at
3.2 GHz with SMT enabled. The compiler is gcc 4.0.2 and the operating system
is linux (Fedora Core 5). We added code to measure the overall wall clock time
that elapses during the execution of each phase of Clustal W. Each version of
Clustal W is run 5 times and the highest and lowest execution times are dropped.
We report the average execution time over the 3 remaining measurements.

We first discuss the effect of SPU-specific optimizations on performance. Here,
only a single SPU thread is used. Then, we discuss how performance scales with
multiple SPUs.

6.1 Pairwise Alignment

Figure 5(a) shows the effects of the individual optimizations on the performance
of pairwise alignment. The first bar (labeled “PPU”) shows the execution time
of the original code running on the PPU. The second bar (“SPU-base”) shows
the execution time when the pairwise alignment is performed on a single SPU.
The code running on the SPU is basically the code from the original program,
extended with the necessary control, DMA transfers and mailbox operations.
Although this overhead adds little to nothing to the overall execution time, we
observe an important slowdown of execution. Inspection of the code shows a
high density of control transfers inside the inner loop body of the important
loop nests. Removing this control flow makes a single SPU already faster than
the PPU (“SPU-control”).

The next bar (“SPU-SIMD”) shows the performance when vectorizing the
forward loop. Vectorization yields a 3.6 times speedup. The next step is to unroll
the vectorized loop with the goals of removing unaligned memory accesses. This
shortens the operation count in a loop iteration and improves performance by
another factor 1.7. The overall speedup over PPU-only execution is a factor 6.7.
At this point, the backward loop requires an order of magnitude less computation
time than the forward loop, so we do not optimize it.

6.2 Progressive Alignment

We perform a similar analysis of progressive alignment (Figure 5(b)). Again we
use a single SPU, so the forward and backward loops are executed sequentially on
the same SPU and the prfscore() functions are executed by the same thread.

Experiences with Parallelizing a Bio-informatics Program on the Cell BE 171

0

20

40

60

80

100

120

140

PPU SPU-base SPU-

control

SPU-SIMD SPU-

SIMD-

pipelined

E
x
e
c
u

ti
o

n
ti

m
e

(
s
e
c
s
)

Pairwise Alignment (PW)

(a) Effect of optimizations on PW

0

20

40

60

80

100

120

140

160

180

200

PPU SPU-base SPU-

SIMD-

prfscore

SPU-

control

SPU-SIMD

E
x
e
c
u

ti
o

n
ti

m
e

(
s
e
c
s
)

Progressive Alignment (PA)

(b) Effect of optimizations on PA

Fig. 5. The effect of each of the optimizations on the execution time of pairwise aligne-
ment and progressive alignment

Again, executing the original code on the SPU is slower than running on the
PPU (bar “SPU-base” vs. “PPU”). Again, we attribute this to excessive control
flow. In PA, we identify two possible causes: the loop inside the prfscore()
function and the remaining control flow inside the loop bodies of the forward and
backward loops. First, we remove all control flow in the prfscore() function by
unrolling the loop, vectorizing and by using pre-computed masks to deal with the
loop iteration count (see Section 5.1). This brings performance close to the PPU
execution time (bar “SPU-SIMD-prfscore”). Second, we remove the remaining
control flow in the same way as in the PW loop nests. This gives an overall
speedup of 1.6 over PPU execution (bar “SPU-control”).

Vectorizing the forward and backward loops improves performance, but the
effect is relatively small (bar “SPU-SIMD”). The reason is that the inner loop
contains calls to prfscore. The execution of these calls remains sequential, which
significantly reduces the benefit of vectorization. Since these calls are also re-
sponsible for most of the execution time, there is no benefit from unrolling the
vectorized loops as the unaligned memory accesses are relatively unimportant
compared to prfscore(). Furthermore, removing unaligned memory accesses
requires many registers but the vectorized loop nest is already close to using all
registers.

6.3 Scaling with Multiple SPUs

The final part of our analysis concerns the scaling of performance when using
multiple SPUs. In the following, we use the best version of each phase. Fig-
ure 6(b) shows the speedup over PPU-only execution when using an increasing
number of SPUs.

As expected, the PW phase scales very well with multiple SPUs. With 8 SPUs,
the parallelized and optimized PW phase runs 51.2 times faster than the original
code on the PPU.

172 H. Vandierendonck et al.

0

1

2

3

4

5

6

7

SPU forward-backward

parallelism

prfscore

demultiplexing

S
p

e
e
d

u
p

Progressive Alignment (PA)

(a) Parallelization of PA

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

Number of SPUs

S
p

e
e
d

u
p

PW

PA

Total

(b) Speedup against number of SPUs

Fig. 6. Speedup of a multi-threaded Clustal W over PPU-only execution

The PA phase has less parallelism than the PW phase. We present results for
three versions (Figure 6(a)): a single-SPU version, a 2-SPU version where the
forward and backward loops execute in parallel, and a 6-SPU version where the
prfscore() function is evaluated by separate threads.

Executing the forward and backward loops in parallel yields a 1.7 speedup
over single-SPU execution. The 6-SPU version improves the 2-SPU version by
1.6. This latter speedup is not very high, as we replace the straight-line code
of prfscore() by control-intensive code to send the values to a different SPU.
Although this communication is buffered, it is necessary to perform additional
checks on buffer limits and to poll the incoming mailbox.

Figure 6(b) also shows the overall speedup for the B input of Clustal W. For
this input, the guide tree phase requires virtually no execution time. The total
execution time is represented by the PW and PA phases. With a single SPU, our
Cell BE implementation is 3 times faster than the original PPU-only version.
With 8 SPUs, our parallel version is 9.1 times faster.

6.4 Discussion

Optimizing the Clustal W program for the Cell BE has given us valuable insight
into this processor. There are a few things that deserve pointing out.

First, although the SPE’s local store can be perceived of as small (256 KB),
there is little point in having larger local stores. Clearly, there isn’t a local store
that will be large enough to hold all of the application’s data, regardless of
input set size. So it will always be necessary to prepare a version of the SPU
code that streams all major data structures in and out of the local store. Given
this assumption, our experience is that 256 KB is enough to hold the compute-
intensive kernels, some small data structures as well as buffers to stream the
major data structures.

Second, the DMA interface is rich and easy to use, although it is necessary
to carefully plan when each DMA is launched. An interesting trick is the use of

Experiences with Parallelizing a Bio-informatics Program on the Cell BE 173

barriers, which force the execution of DMAs in launch order. We use this feature
when copying a buffer from one SPU to another, followed by sending a mailbox
message2 to notify the destination SPU that the buffer has arrived. By using a
barrier, we can launch the message without waiting for completion of the buffer
DMA. Furthermore, tag queues can be specified such that the barrier applies
only to the DMAs in the specified tag queue. Thus, other DMAs (e.g., to stream
data structures) are not affected by the barrier.

We experienced some properties of the Cell BE as limitations. E.g., 32-bit
integer multiplies are not supported in hardware. Instead, the compiler generates
multiple 16-bit multiplies. This is an important limitation in the prfscore()
function, which extensively uses 32-bit multiplies. Also, the DMA scatter/gather
functionality was not useful to us as we needed 8 byte scatter/gather operations
but the cell requires that the data elements are at least 128 byte large.

Finally, although mailbox communication is easy to understand, it is a very
raw device to implement parallel primitives. We find that mailboxes provide not
enough programmer abstraction and are, in the end, hard to use. One problem
results from sending all communication through a single mailbox. This makes
it impossible to separately develop functionality to communicate with a single
SPU, as this functionality can receive unexpected messages from a different SPU
and it must know how to deal with these messages. An interesting solution could
be the use of tag queues in the incoming mailbox, such that one can select only
a particular type or source of message.

7 Related Work

The Cell BE Architecture promises high performance at low power consumption.
Consequently, several researchers have investigated the utility of the Cell BE for
particular application domains.

Williams et al. [13] measure performance and power consumption of the Cell
BE when executing scientific computing kernels. They compare these numbers to
other architectures and find potential speedups in the 10-20x range. However, the
low double-precision floating-point performance of the Cell is a major down-side
for scientific applications. A high-performance FFT is described in [14].

Héman et al. [15] port a relational database to the Cell BE. Only some
database operations (such as projection, selection, etc.) are executed on the
SPUs. The authors point out the importance of avoiding branches and of prop-
erly preparing the layout of data structures to enable vectorization.

Bader et al. [16] develop a list ranking algorithm for the Cell BE. List ranking
is a combinatorial application with highly irregular memory accesses. As memory
accesses are hard to predict in this application, it is proposed to use software-
managed threads on the SPUs. At any one time, only one thread is running.
When it initiates a DMA request, the thread blocks and control switches to
another thread. This results in a kind of software fine-grain multi-threading and
yields speedups up to 8.4 for this application.
2 SPU-to-SPU mailbox communication is implemented using DMA commands.

174 H. Vandierendonck et al.

Bagojevic et al. [17] port a randomized axelerated maximum likelihood kernel
for phylogenetic tree construction to the Cell BE. They use multiple levels of
parallelism and implement a scheduler that selects at runtime between loop-level
parallelism and task-level parallelism.

Also, the Cell BE has been tested using bio-informatics applications. Sachdeva
et al. [18] port the FASTA and Clustal W applications to the Cell BE. For
Clustal W, they have only adapted the forward loop in the pairwise alignment
phase for the SPU. Their implementation of the PW phase takes 3.76 seconds on
8 SPUs, whereas our implementation takes 1.44 seconds. Our implementation is
faster due to the removal of unaligned memory accesses, due to the vectorization
of address computations when accessing the substitution matrix and also due to
optimizing control flow in the backward pass. Furthermore, Sachdeva et al. apply
static load balancing while our experiments (not discussed) reveal that dynamic
load balancing works better since the comparison of two sequences has variable
execution time.

8 Conclusion

The Cell Broadband Engine Architecture is a recent heterogeneous multi-core
architecture targeted at compute-intensive workloads. The SPUs, which are the
workhorse processors, have rare architectural features that help them to sustain
high performance, but they also require specific code optimizations. In this paper,
we have investigated what optimizations are necessary and we measured how
much they improve performance. We performed our experiments on Clustal W,
a well-known bio-informatics application for multiple sequence alignment where
we found that (i) executing unmodified code on an SPU is slower than execution
on the PPU, (ii) removing control flow from inner loops makes the SPU code
already faster than the PPU, (iii) 4-way vectorization improves performance
up to 3.6x and (iv) removing unaligned memory accesses gives an important
additional speedup in one loop nest. Using these optimizations, we demonstrated
a speedup of 51.2 over PPU-only execution for the pairwise alignment phase, 5.7
for the progressive alignment phase and an overall 9.1 speedup.

We found the lack of support for 32-bit integer multiplies most limiting to
performance and we found mailbox communication to be the most programmer-
unfriendly feature of the SPUs.

Acknowledgements

Hans Vandierendonck is Postdoctoral Research Fellow with the Fund for Sci-
entific Research - Flanders (FWO). Sean Rul is supported by the Institute for
the Advancement of Science and Technology in the Industry (IWT). This re-
search was also sponsored by Ghent University and by the European Network
of Excellence on High-Performance Embedded Architectures and Compilation
(HiPEAC). The authors are gratefull to the Barcelona Supercomputing Center
- Centro Nacional de Supercomputacion for access to a Cell Blade.

Experiences with Parallelizing a Bio-informatics Program on the Cell BE 175

References

1. Pham, D., et al.: The design and implementation of a first-generation Cell proces-
sor. In: IEEE International Solid-State Circuits Conference, pp. 184–592 (2005)

2. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sen-
sitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22),
4673–4680 (1994)

3. Flachs, B., et al.: The microarchitecture of the synergistic processor for a Cell
processor. Solid-State Circuits, IEEE Journal of 41(1), 63–70 (2006)

4. Gschwind, M., Hofstee, P.H., Flachs, B., Hopkins, M., Watanabe, Y., Yamazaki,
T.: Synergistic processing in cell’s multicore architecture. IEEE Micro 26(2), 10–24
(2006)

5. Bader, D., Li, Y., Li, T., Sachdeva, V.: BioPerf: A Benchmark Suite to Evalu-
ate High-Performance Computer Architecture on Bioinformatics Applications. In:
The IEEE International Symposium on Workload Characterization, pp. 163–173
(October 2005)

6. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of Molecular Biology 147(1), 195–197 (1981)

7. Just, W.: Computational complexity of multiple sequence alignment with SP-score.
Journal of Computational Biology 8(6), 615–623 (2001)

8. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)

9. Edgar, R.C.: Muscle: a multiple sequence alignment method with reduced time
and space complexity. BMC Bioinformatics 5(1) (2004)

10. Uniprotkb/swiss-prot protein knowledgebase 52.5 statistics,
http://www.expasy.ch/sprot/relnotes/relstat.html

11. Mikhailov, D., Cofer, H., Gomperts, R.: Performance Optimization of ClustalW:
Parallel ClustalW, HT Clustal, and MULTICLUSTAL. White Paper, CA Silicon
Graphics (2001)

12. Chaichoompu, K., Kittitornkun, S., Tongsima, S.: MT-ClustalW: multithreading
multiple sequence alignment. In: Sixth IEEE International Workshop on High Per-
formance Computational Biology, p. 8 (2006)

13. Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P., Yelick, K.: The potential
of the Cell processor for scientific computing. In: Proceedings of the 3rd conference
on Computing frontiers, pp. 9–20 (May 2006)

14. Greene, J., Cooper, R.: A parallel 64K complex FFT algorithm for the
IBM/Sony/Toshiba Cell broadband engine processor. White Paper (November
2006)

15. Heman, S., Nes, N., Zukowski, M., Boncz, P.A.: Vectorized Data Processing on the
Cell Broadband Engine. In: Proceedings of the International Workshop on Data
Management on New Hardware (June 2007)

16. Bader, D.A., Agarwal, V., Madduri, K.: On the design and analysis of irregular
algorithms on the cell processor: A case study on list ranking. In: 21st IEEE Inter-
national Parallel and Distributed Processing Symposium (March 2007)

17. Blagojevic, F., Stamatakis, A., Antonopoulos, C.D., Nikolopoulos, D.E.: RAxML-
Cell: Parallel phylogenetic tree inference on the cell broadband engine. In: Inter-
national Symposiumon Parallel and Distributed Processing Systems (2007)

18. Sachdeva, V., Kistler, M., Speight, E., Tzeng, T.H.K.: Exploring the viability of
the Cell Broadband Engine for bioinformatics applications. In: Proceedings of the
6th Workshop on High Performance Computational Biology, p. 8 (March 2007)

http://www.expasy.ch/sprot/relnotes/relstat.html

	Experiences with Parallelizing a Bio-informatics Program on the Cell BE
	Introduction
	The Cell BE Architecture
	Clustal W
	Analysis of Clustal W
	Optimization of Clustal W
	Optimizing for the SPU
	Modifications to Data Structures
	Parallelization of Pairwise Alignment
	Parallelization of Progressive Alignment

	Evaluation
	Pairwise Alignment
	Progressive Alignment
	Scaling with Multiple SPUs
	Discussion

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

