
Abstract
The load instructions of some of the bioinformatics applica-
tions in the BioPerf suite possess interesting characteristics:
only a few static loads cover almost the entire dynamic load
execution and they almost always hit in the data cache. Never-
theless, these load instructions represent a major performance
bottleneck. They often precede or follow branches that are hard
to predict, which makes their L1 hit latency difficult to hide
even in dynamically scheduled execution cores. This paper
investigates this behavior and suggests simple source-code
transformations to improve the performance of these bench-
mark programs by up to 92%.

1. Introduction
The bioinformatics field is primarily concerned with the de-
velopment of advanced information and computation technol-
ogy to tackle problems in biology. With the exponential
growth of biological databases in recent years, bioinformatics
applications are fast becoming an important computer work-
load. In response to this trend, the computer architecture com-
munity has released several representative benchmark suites,
including BioInfoMark [13] from the University of Florida
released in January 2005, BioBench [1] from the University of
Maryland released in March 2005, and BioPerf [3] from Geor-
gia Tech released in October 2005.

This paper investigates the bioinformatics applications from
the BioPerf suite. In particular, we focus on characteristics of
their load instructions. Loads represent a large percentage of
the executed instructions in these applications and exhibit in-
teresting properties. On the one hand, only a small fraction of
the static loads are responsible for almost all executed loads,
making these few loads an attractive target for performance
optimizations. Even code size increasing optimizations can be
applied without much concern over instruction cache perform-
ance degradation. On the other hand, these loads incur only
few L1 data cache misses, which seems to leave no opportu-
nity for optimization. Nevertheless, we show that the multi-
cycle L1 hit latency can be problematic and poses a serious
performance bottleneck in these bioinformatics applications.
The L1 hit latency of modern superscalar microprocessors is
typically greater than a single cycle. For example, for integer
loads, the Power PC G5 [10] and the Alpha 21264 [12] have a
three-cycle and the Pentium 4 [11] has a two-cycle L1 load-to-
use latency.

It is generally true that most of the time this short latency
can be fully hidden. On the software side, optimizing compil-
ers perform local and possibly global code scheduling, i.e.,
they try to move independent instructions between loads and
their first uses to mask the load latency. On the hardware side,

today’s high-end microprocessors contain large issue queues,
ROBs, and load/store queues. Together with their dynamic
schedulers, finding useful instructions to execute during the
two or three cycles associated with the L1 hit latency is often
not a problem. However, this paper shows that the code found
in some bioinformatics applications can break the latency hid-
ing mechanisms of current compilers and out-of-order execu-
tion cores and suggests some corrective measures.

The rest of this paper is organized as follows. The next sec-
tion studies the characteristics of the load instructions in a
number of bioinformatics codes and explains why their latency
is hard to hide. Section 3 illustrates the source-code load
scheduling necessary to avoid this problem. Sections 4 and 5
discuss the speedups due to hiding the L1 hit latency. Section 6
describes related work. Section 7 concludes the paper.

2. Load Instruction Characteristics
For this study, we selected nine applications from the BioPerf
suite covering three key areas in bioinformatics, namely se-
quence analysis, molecular phylogeny analysis, and protein
structure analysis. To profile and analyze the nine programs,
we used the ATOM toolkit [17] and the inputs described in
Table 2 of the BioPerf paper [3], i.e., the medium-sized Class-
B input sets. The applications were compiled with the Alpha-
DEC C compiler version 6.5 and the “-O3 -arch ev68” optimi-
zation flags for the profile runs.

Figure 1 shows the percentage of the executed instructions
that are loads. Results for stores, conditional branches, and
other instructions are also provided. On average, loads account
for 30% of the executed instructions. The absolute numbers of
executed loads range from 20 billions to 270 billions.

Table 1 shows the total number of instructions executed as
well as the fraction thereof that is floating-point instructions.
Only hmmpfam, predator, and promlk execute a significant
number of floating-point operations. In these three applica-
tions, 1.7%, 6.5%, and 30.9%, respectively, of the executed
instructions are floating-point loads. This indicates that, with
the exception of promlk, integer loads are more significant
than floating-point loads in our benchmark applications. Figure
2 plots the fraction of executed loads that stems from the most
frequently executed load instructions. For clarity, only three
representative bioinformatics programs are shown; the other
six applications exhibit similar characteristics. For comparison
purposes, three programs from the SPEC CPU2000 integer
benchmark suite are also included. The figure shows that about
80 static loads cover over 90% of the executed loads in the
three bioinformatics applications. For the SPEC CPU2000
programs crafty, vortex, and gcc, the same number of static
loads provides a much lower coverage (about 10% to 58%).

Load Instruction Characterization and Acceleration of the BioPerf Programs
Paruj Ratanaworabhan and Martin Burtscher

Computer Systems Laboratory, Cornell University
{paruj, burtscher}@csl.cornell.edu

711-4244-0509-2/06/$20.00 ©2006 IEEE

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

blast

clustalw

dnapenny

fasta

hm
m

calibrate

hm
m

pfam

hm
m

search

predator

prom
lk

average

loads stores cond. branches others

Figure 1: Instruction profile of the bioinformatics applications
in the BioPerf suite

Program Instructions (B) Floating-Point
blast 77.3 0.04%
clustalw 789.4 0.04%
dnapenny 145.4 0.04%
fasta 542.1 0.63%
hmmcalibrate 67.9 0.15%
hmmpfam 277.4 5.07%
hmmsearch 894.2 0.02%
predator 837.6 13.85%
promlk 339.7 65.33%

Table 1: Number of executed instructions and percentage of
executed floating-point instructions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 21 41 61 81

Num be r of S ta tic Loa ds

blas tp c lus talw hm m search cra fty gcc vortex

Figure 2: Cumulative frequency of executed loads versus
number of static loads for representative programs from the
BioPerf and the SPEC CPU2000 integer benchmark suites

Since loads represent a large fraction of the executed in-

structions in our nine applications and only a small number of
static loads are responsible for the vast majority of the exe-
cuted loads, these few loads contribute substantially to the total
runtime of the applications.

2.1 Cache Performance
Table 2 shows the cache performance of our benchmark pro-
grams. The cache subsystem is modeled and simulated using

ATOM. The parameters are given in Table 3 and reflect the
cache configuration of our Alpha 21264 reference machine.

We find that the caches satisfy almost all load accesses. On
average, merely 0.03% of the executed load instructions access
the main memory. This number is likely to be associated solely
with compulsory misses. 99.1% of the loads hit in the L1
cache. Blast has the highest overall miss rate. Given our sys-
tem’s L1, L2, and main memory latencies of 3, 5, and 72 cy-
cles, the average memory access time (AMAT) for blast is
3 + 1.78% * (5 + 4.05% * 72) = 3.14 cycles. Clearly, the
dominating term is the L1 hit latency. The L2 and main mem-
ory latencies only contribute 0.14 / 3.14 = 4.5% to the AMAT.

Local miss rate for loads AMAT
L1 L2 Overall

blast 1.78% 4.05% 0.072% 3.14
clustalw 1.90% 0.00% 0.000% 3.10
dnapenny 0.46% 4.30% 0.020% 3.04
fasta 0.47% 0.05% 0.000% 3.02
hmmcalibrate 1.61% 4.24% 0.068% 3.13
hmmpfam 0.67% 10.64% 0.071% 3.08
hmmsearch 0.35% 7.69% 0.027% 3.04
predator 0.46% 0.15% 0.001% 3.02
promlk 0.52% 4.93% 0.026% 3.04
average 0.91% 4.01% 0.03% 3.07
gmean 0.74% 0.75% 0.01% 3.07

Table 2: Cache performance of each bioinformatics application

L1 data cache size: 64 KB
associativity: 2 ways
block size: 64 bytes
separate from instruction cache
write policy: write back, write allocate

L2 cache size: 4 MB
associativity: direct-mapped
block size: 64 bytes
holds instructions and data

Table 3: Modeled parameters of the cache subsystem

Note that the L1 data cache miss rate is very low even
though the input data that the applications operate on are too
large to fit into the cache. The reason for the low miss rates is
that these programs tend to operate on a chunk of data that fits
into the L1 cache for a period of time before moving on to the
next chunk. Hence, we only see a few compulsory cache
misses that occur when the programs transition to the next
chunk.

It should be noted that there are bioinformatics applications
that are memory-bound and do not always hit in the L1 data
cache. They are, however, not the focus of this paper. Exam-
ples of such applications include diffseq, megamerger, and
shuffleseq from the European Molecular Biology Open Soft-
ware Suite [16], which are part of the BioInfoMark suite.

2.2 Load to Branch and Branch to Load Sequences
2.2.1 Out-of-order Execution
Consider the code snippet in Figure 3, which is taken from
hmmsearch. The snippet is part of the most frequently exe-

72

cuted code section. The arrows show the load dependency
chains. Although these chains are relatively short, they turn out
to be problematic. The ultimate consumers are instructions that
lead to control-flow decisions, which can make the corre-
sponding conditional branches hard to predict. The most criti-
cal point is in the first basic block (BB1). Until the conditional
branch in this block is resolved, the instructions beyond it can
only be executed speculatively and will have to be squashed if
a branch misprediction occurs.

load r18 <- [r24+0]

load r25 <- [r14+0]

add r18 <- r25, r18 BB1

cmple r7 <- r18, r7

bne r7, A

store r18 -> [r8+0] BB2

A:

load r9 <- [r22+0]

load r19 <- [r15+0]

load r23 <- [r8+0] BB3

add r6 <- r19, r9

cmple r22 <- r6, r23

nop

bne r22, B

store r6 -> [r8+0] BB4

B:

load r24 <- [r1+0]

load r10 <- [r3+0] BB5

add r20 <- r10, r24

:

Figure 3: Data and control dependences in a section of
hmmsearch machine code

To simplify the discussion, suppose that all loads hit in the

L1 data cache and that all load operands are ready. Further-
more, assume that the L1 hit latency is three cycles, that the
branch prediction logic incorrectly predicts the execution path
to be BB1, BB3, and BB5, and that the issue queue can dis-
patch two instructions per cycle, matching the service rate of
the L1 cache sub-system.

In cycle x, the first two loads from BB1 are issued. The dy-
namic scheduler then detects that the first two loads in BB3
and in BB5 are independent instructions. Thus, the scheduler
issues these loads in cycles x+1 and x+2, respectively, to hide
the latency of the loads issued in cycle x. These are speculative
issues since the branch in BB1 has not yet been resolved. In

cycle x+3, the load results from the first two loads in BB1 can
be consumed by the add instruction from BB1. The scheduler
then dispatches this non-speculative add together with the
speculative third load in BB3. In cycle x+4, the compare in-
struction from BB1 can be issued, and the branch outcome is
finally determined in cycle x+5 when the result of the compare
is available. Figures 4(a) and 4(b) show the instructions in the
pipeline at cycles x+4 and x+5.

Figure 4: hmmsearch instructions in cycle x+4 (a), x+5 (b),

and x+6 when branch misprediction occurs (c)

Now, consider what happens in cycle x+6 when the branch
misprediction is detected (Figure 4(c)). The speculatively is-
sued instructions are squashed and the fetch path is corrected
to BB2, BB3, and BB5. At this point, the L1 hit latency of the
first two loads in BB1, which belong to a load to branch se-
quence, is effectively added to the branch misprediction pen-
alty because their latency delayed the resolution of the branch
and no useful instructions were executed during this delay. In
addition, during the next few cycles, the CPU fetches the loads
in BB3, which come after the mispredicted branch, along with
their dependent instructions. Because the processor pipeline is
empty after recovering from the branch misprediction, there
are no independent instructions to hide the latency of the loads
in BB3 at this point. In other words, their L1 hit latency is fully
exposed. The loads in BB5 suffer from the same problem if the
conditional branch in BB3 is mispredicted.

Code sections involving a load to branch or a branch to load
sequence that is followed by load-dependent instructions occur
frequently in these bioinformatics applications and often in-
volve hard-to-predict branches. The L1 hit latency of these
load instructions, thus, becomes problematic. It either in-
creases the branch misprediction penalty or is exposed after a

cmple r7<-r18,r7

add r18<-r25,r18
load r23<-[r8+0]*

cycle
x+4

 (a)

cycle
x+5

(b)

cycle
x+6

(c)

* denotes speculative instrs

load r24<-[r1+0]*
load r10<-[r3+0]*

load r9<-[r22+0]*
load r19<-[r15+0]*

load r18<-[r24+0]
load r25<-[r14+0]

bne r7,A store r18->[r8+0]

cmple r7<-r18,r7

cmple r7<-r18,r7

add r18<-r25,r18

bne r7,A

add r18<-r25,r18
load r23<-[r8+0]*

load r24<-[r1+0]*
load r10<-[r3+0]*

load r9<-[r22+0]*
load r19<-[r15+0]*

load r18<-[r24+0]
load r25<-[r14+0]

load r18<-[r24+0]
load r25<-[r14+0]

73

branch misprediction. This can significantly increase the over-
all runtime, as we will show.

Table 4(a) shows how often load to branch sequences occur
as a percentage of the total executed loads in the nine bioin-
formatics applications. It also gives the average branch mis-
prediction rate for the branches in such sequences, which are
very high. Table 4(b) indicates the percentage of the executed
loads that have tight dependence chains and appear right after a
branch that has a misprediction rate of 5% or higher. Note that
the two load sequences are not mutually exclusive. A load de-
pendent chain that comes after a hard-to-predict branch can
also lead up to a branch instruction. We use a hybrid branch
predictor [15] with an entry for each static branch (i.e., there is
no aliasing) to measure the branch misprediction rate.

Load to branch
Average branch
misprediction rate

blast 75.7% 19.9%
clustalw 56.2% 5.9%
dnapenny 33.6% 12.1%
fasta 31.6% 17.2%
hmmcalibrate 91.6% 11.2%
hmmpfam 92.4% 10.4%
hmmsearch 93.5% 9.9%
predator 51.1% 10.5%
promlk 15.2% 6.3%

(a)

Load dependent
chain after hard-to-
predict branch

blast 32.7%
clustalw 19.6%
dnapenny 6.7%
fasta 23.2%
hmmcalibrate 56.5%
hmmpfam 57.8%
hmmsearch 60.4%
predator 21.1%
promlk 2.3%

(b)

Table 4: Load to branch sequences as percent of total executed
loads and average misprediction rate for the following

branches (a), loads after hard-to-predict branches (greater than
5% misprediction rate) as percent of total executed loads (b)

2.2.2 Load Hoisting with an Optimizing Compiler
The instruction sequence in Figure 3 can be optimized. As
BB1 dominates BB3 and BB5, the first two loads in BB3 and
BB5 will always be executed if BB1 is executed. Because
these two load pairs comprise independent instructions, they
can be hoisted into BB1 (Figure 5(a)). This hoisting allows the
out-of-order engine to schedule the loads from BB3 and BB5
non-speculatively to hide the latency of the original loads in
BB1 as well as the latency of the hoisted loads. Thus, perform-
ing this code transformation will reveal how much the original
code is slowed down due to the L1 hit latency. Note that the
transformation does not change the predictability of the

branch. It only changes the type of the instructions that precede
and follow the branch. They are now single-cycle and/or inde-
pendent instructions whose execution does not cause pipeline
stalls, even after a branch misprediction recovery action.

load r18 <- [r24+0]

load r25 <- [r14+0]

add r18 <- r25, r18

cmple r7 <- r18, r7

bne r7, A

store r18 -> [r8+0]

load r9 <- [r22+0]

load r19 <- [r15+0]

load r23 <- [r8+0]

add r6 <- r19, r9

cmple r22 <- r6, r23

nop

bne r22, B

store r6 -> [r8+0]

load r24 <- [r1+0]

load r10 <- [r3+0]

add r20 <- r10, r24

(a)

load r18 <- [r24+0]

load r25 <- [r14+0]

load r9 <- [r22+0]

load r19 <- [r15+0]

load r24 <- [r1+0]

load r10 <- [r3+0]

add r18 <- r25, r18

cmple r7 <- r18, r7

bne r7, A

store r18 -> [r8+0]

load r23 <- [r8+0]

add r6 <- r19, r9

cmple r22 <- r6, r23

nop

bne r22, B

store r6 -> [r8+0]

add r20 <- r10, r24

(b)

if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;

if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;

if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;

(c)

Figure 5: Load hoisting: original code (a), after load hoisting

(b), corresponding source code (c)

Unfortunately, hoisting these loads is beyond the capabili-
ties of most optimizing compilers (see below). The culprits are
the intervening store instructions in BB2 and BB4 (highlighted
in bold in Figures 5(a) and 5(b)). Hosting any load across a
store requires precise static memory disambiguation informa-
tion, which compilers often cannot derive. However, if we
look at the source code that corresponds to this sequence of
machine instructions (Figure 5(c)) and the type of the vari-
ables, it quickly becomes obvious that this load hoisting is
safe. The hoisted loads correspond to xmb and the dpp, tpdm,
and bp arrays that can never alias with a store to the mc array.
The only load that cannot be hoisted is the third load in BB3 as
it reads from the mc array.

3. Source-Code Load Scheduling
Having identified the type of instruction sequence whose L1
hit latency is difficult to hide, we performed some load sched-
uling at the source-code level to remove the problem. Because
of the availability of semantic and context information, manu-
ally scheduling loads at this level allows us to hide the L1 hit

74

latency in cases where an optimizing compiler and an out-of-
order engine fail to do so. In addition, this optimization is easy
to do in these applications because they only contain a few
performance critical static loads (see previous section).

To identify which loads to optimize for a given application,
we use ATOM to detect the two load sequences described in
Section 2.2, and map the loads back to source code lines. A
profile run then determines, for each sequence, the frequency
of execution, the branch misprediction rate, the L1 miss rate,
and information about the corresponding lines of source code.
The optimization candidates are the frequently executed loads
that lead to or follow branches with high misprediction rates. It
should be noted, however, that we cannot always find opportu-
nities to schedule loads in the source code. Although candidate
loads may exist at the machine instruction level, there may not
be enough opportunity in the source code to schedule the loads
(e.g., in a tight loop). Of the nine bioinformatics applications
we have studied, six are amenable to such scheduling (Section
3.3) and we will restrict our evaluation to these six applica-
tions. Although the primary purpose for this scheduling is to
hide the L1 hit latency, our transformations sometimes intro-
duce additional opportunities for optimization. The next two
subsections demonstrate the load scheduling on the programs
hmmsearch and predator.

load index 5175 5177 5179 5182
frequency 3.97% 3.97% 3.97% 3.97%
L1 miss rate 0.05% 0.02% 0.07% 0.03%
branch misprediction 11.20% 28.41% 38.24% 0.50%
in function P7Viterbi P7Viterbi P7Viterbi P7Viterbi
line number 132 133 134 136
in file fast_algorithms.c fast_algorithms.c fast_algorithms.c fast_algorithms.c

Table 5: Profile of the frequently executed loads in hmmsearch

3.1 Hmmsearch
A sample profile of the most frequently executed loads in
hmmsearch is given in Table 5. The profile points us to a sec-
tion of code in the P7Viterbi function, which is replicated in
Figure 6(a). This loop contains several short IF statements
whose THEN paths contain a single store statement. The IF
conditions are rather involved, requiring loads from at least
two arrays. Each statement in boxes 1, 2, and 3 contains a
chained dependence on mc[k], dc[k], and ic[k], respec-
tively. The code in the three boxes is otherwise independent.
When compiling the statements in this loop into machine code,
it will contain tight dependence chains involving loads to con-
trol transfer instructions that are followed by other loads as
shown in Figure 3. The profile in Table 5 points to the loads in
the first four IF conditions in box1. Each load rarely misses in
the L1 cache, which is expected for regular incremental array
accesses. Except for the last IF statement, which is a bounds
check, these IF statements have a high branch misprediction
rate. Therefore, we can expect the L1 hit latency of the corre-
sponding loads to degrade the performance of this loop as de-
scribed in Section 2.2.

mc[k] = mpp[k-1] + tpmm[k-1]; (1)
 if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;
 if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;
 if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;
 mc[k] += ms[k];
 if (mc[k] < -INFTY) mc[k] = -INFTY;

dc[k] = dc[k-1] + tpdd[k-1]; (2)
 if ((sc = mc[k-1] + tpmd[k-1]) > dc[k]) dc[k] = sc;
 if (dc[k] < -INFTY) dc[k] = -INFTY;

 if (k < M) { (3)
 ic[k] = mpp[k] + tpmi[k];
 if ((sc = ip[k] + tpii[k]) > ic[k]) ic[k] = sc;
 ic[k] += is[k];
 if (ic[k] < -INFTY) ic[k] = -INFTY;
 }
}

for (k = 1; k <= M; k++) {

(a)

for (k = 1; k <= M; k++) {

 temp1 = mpp[k-1] + tpmm[k-1]; (1.1)
 temp2 = ip[k-1] + tpim[k-1];
 temp3 = dpp[k-1] + tpdm[k-1];
 temp4 = xmb + bp[k];

 temp5 = dc[k-1] + tpdd[k-1]; (2.1)
 temp6 = mc[k-1] + tpmd[k-1];

 if (temp2 > temp1) temp1 = temp2; (1.2)
 if (temp3 > temp1) temp1 = temp3;
 if (temp4 > temp1) temp1 = temp4;

if (temp6 > temp5) temp5 = temp6; (2.2)

mc[k] = ms[k] + temp1; (1.3)
 if (mc[k] < -INFTY) mc[k] = -INFTY;

 dc[k] = temp5; (2.3)
 if (dc[k] < -INFTY) dc[k] = -INFTY;

 if (k < M) { (3)
 ic[k] = mpp[k] + tpmi[k];
 if ((sc = ip[k] + tpii[k]) > ic[k]) ic[k] = sc;
 ic[k] += is[k];
 if (ic[k] < -INFTY) ic[k] = -INFTY;
 }
}

(b)

 temp1 = mpp[k-1] + tpmm[k-1]; (1.1)
 temp2 = ip[k-1] + tpim[k-1];
 temp3 = dpp[k-1] + tpdm[k-1];
 temp4 = xmb + bp[k];

 temp5 = dc[k-1] + tpdd[k-1]; (2.1)
 temp6 = mc[k-1] + tpmd[k-1];

 if (temp2 > temp1) temp1 = temp2; (1.2)
 if (temp3 > temp1) temp1 = temp3;
 if (temp4 > temp1) temp1 = temp4;

for (k = 1; k <= M-1; k++) {

if (temp6 > temp5) temp5 = temp6; (2.2)

mc[k] = ms[k] + temp1; (1.3)
 if (mc[k] < -INFTY) mc[k] = -INFTY;

 dc[k] = temp5; (2.3)
 if (dc[k] < -INFTY) dc[k] = -INFTY;

ic[k] = is[k] + temp7; (3.3)
 if (ic[k] < -INFTY) ic[k] = -INFTY;
}

(c)

 temp7 = mpp[k-1] + tpmi[k-1]; (3.1)
 temp8 = ip[k-1] + tpii[k-1];

if (temp8 > temp7) temp7 = temp8; (3.2)

Figure 6: A loop in hmmsearch: original code (a),
code after load scheduling at source level (b) and (c)

75

load r18 <- [r24+0]

load r25 <- [r14+0]

add r18 <- r25, r18 BB1

cmple r7 <- r18, r7

bne r7, A

store r18 -> [r8+0] BB2

A:

load r9 <- [r22+0]

load r19 <- [r15+0]

load r23 <- [r8+0] BB3

add r6 <- r19, r9

cmple r22 <- r6, r23

nop

bne r22, B

store r6 -> [r8+0] BB4

B:

load r24 <- [r1+0]

load r10 <- [r3+0] BB5

add r20 <- r10, r24

:
(a)

load r16 <- [r17+0]

load r4 <- [r8+0]

load r27 <- [r19+0]

load r3 <- [r21+0]

add r10 <- r26, r10

load r26 <- [r9+0]

add r4 <- r16, r4

load r18 <- [r23+0]

cmplt r5 <- r10, r4

add r3 <- r27, r3

cmovne r10 <- r5, r4

load r7 <- [r25+0]

load r5 <- [r22+0]

add r4 <- r18, r7

load r16 <- [r17+4]

cmplt r27 <- r10, r3

cmovne r10 <- r27, r3

load r3 <- [r1+0]

load r27 <- [sp+264]

add r26 <- r27, r26

:

(b)

Figure 7: Generated machine code: original code (a)
and after load scheduling in the source code (b)

We can hide these load latencies by manually scheduling the

source code. For box 1, we observe that loading an element
from arrays mpp, tpmm, ip, tpim, dpp, tpdm, and bp in
each iteration can be done independently. The same is true for
the elements of arrays dc, tpdd, mc, and tpmd in box 2.
Therefore, we create six temporary variables to hold the results
of the computations that need to be performed in the condition
checks of the IF statements in boxes 1 and 2. Then, we substi-
tute the variables for the original computations. After that, we
schedule the code as shown in Figure 6(b) so that the bodies of
each box are used to hide the latency of each other. Notice how
the new code remedies the tight load dependence chains from
the original code and enables the compiler to convert the origi-
nal control flow into much faster conditional moves in boxes
1.2 and 2.2. This kind of load scheduling is hard to do for a
compiler because of the store instruction in the THEN path of
each IF statement. Static compiler analysis may not be able to
perform the necessary memory disambiguation, thus impeding
the scheduling of loads.

This loop can be further optimized. We can break the guard-
ing IF condition in box 3 and schedule the code more, creating
two additional temporary variables and using the body of box
3 for further latency hiding (Figure 6(c)). Again, the compiler
will be unable to move any loads out of the guarding condi-
tions if it cannot guarantee safety. Based on the source code,

we know that box 3 will be executed as many times as boxes 1
and 2 except for the last iteration. We can, therefore, shorten
the loop count by one, duplicate the load-transformed code of
boxes 1 and 2, and place the duplicate right after the loop exit.

Figure 7 compares the machine instructions of the original
code with the manually transformed code. The original store
instructions that appear in Figure 7(a) are not visible in Figure
7(b) as they are pushed down by the hoisted load instructions.
Now, the dynamic scheduler has enough non-speculative in-
structions available to hide the latency of the loads. In addi-
tion, notice that the original branch instructions are trans-
formed into faster conditional move operations (highlighted in
bold in Figure 7). So, for hmmsearch, our source-code trans-
formation allows the compiler to optimize the original code in
two ways: it can always hide the L1 hit latency of the loads
and it can eliminate the conditional branches.

 c = k * m; - (1)

 for (tt = 1, z = row[i]; z != PAIRNULL; z = z->NEXT) - (2)

 if (z->COL == j) - (3)

 { tt = 0; break; } - (4)

 if (tt != 0) - (5)

 c = va[j]; - (6)

 if (c <= 0) - (7)

 { c = 0; ci = i; cj = j; } - (8)

 else - (9)

 { ci = pi; cj = pj; } - (10)

(a)

 temp1 = k * m; - (1)

 c = va[j]; - (2)

 for (tt = 1, z = row[i]; z != PAIRNULL; z = z->NEXT) - (3)

 if (z->COL == j) - (4)

 { tt = 0; break; } - (5)

 if (tt == 0) - (6)

 c = temp1; - (7)

 if (c <= 0) - (8)

 { c = 0; ci = i; cj = j; } - (9)

 else - (10)

 { ci = pi; cj = pj; } - (11)

(b)

Figure 8: Latency hiding in predator: original code (a) and
transformed code (b)

3.2 Predator
Scheduling the loads at the source-code level does not have to
be as involved as described above. Figure 8 shows the original
and the transformed code of a section of the BioPerf program
predator (from prdfali.c). In the original code (Figure 8(a)),
suppose the load va[j] in line 6 hits in the L1 cache. Because
of line 5, we have a situation where the load of va[j] into
variable c is immediately preceded by a control-flow decision.
If line 6 is frequently executed and the branch in line 5 is hard
to predict, we can anticipate a situation where the L1 hit la-
tency will be exposed after a branch misprediction and hamper
performance.

The transformed code in Figure 8(b) improves this situation.
It hoists the load of va[j] before the FOR loop (line 2), al-
lowing the load to execute non-speculatively. It uses the body
of the FOR loop to hide the load latency. Lines 1, 6 and 7 in

76

8(b) represent corrective measures to restore the value of c to
k*m in case va[j] was not supposed to be loaded.

Note that an optimizing compiler is unlikely to hoist the
load in the way we propose. Even with feedback information
telling the compiler that line 6 in the original code is indeed
frequently executed, it would be hard to prove that variable j
always contains a valid index for array va at line 1. If the
compiler cannot prove that it is safe to move the load in ques-
tion out of its guarding IF condition, it will not perform this
optimization. However, at the source code level, we know that
j is a local variable whose value is always within va’s array
bounds (code not shown), thus making it safe to hoist the load.

3.3 Other Applications
Besides hmmsearch and predator, we discovered similar op-
portunities to optimize the load scheduling in the source code
of four other applications, namely dnapenny, hmmpfam,
hmmcalibrate, and clustalw. Table 6 shows, for the six appli-
cations, the number of load candidates we considered and the
approximate number of lines of source code involved in the
load transformations. For each application, we use the fastest,
most optimized version as the baseline code on which we per-
form the load scheduling.

Static loads considered Lines of C code involved
dnapenny 3 10
hmmpfam 16 25
hmmsearch 19 30
hmmcalibrate 14 25
predator 1 5
clustalw 4 10

Table 6: Number of static loads and lines of C source code
involved in load transformation

4. Evaluation Methodology
4.1 Evaluation Platforms
We use four evaluation platforms: Alpha 21264 - Tru64 UNIX
5.1B, PowerPC G5 - Mac OS X, Pentium 4 - Red Hat Linux,
and Itanium 2 - Red Hat Enterprise Linux AS4. Details are
presented in Table 7.

Alpha 21264 - Tru64 Unix Power PC - Mac OS X
Datapath 64 bits 64 bits
Clock speed 833 MHz 2.7 GHz
Register 32 GPR, 32 FPR 32 GPR, 32 FPR
L1 data cache size 64KB 2-way set associatve 32 KB 2-way set associative
L1 data cache hit latency 3 to 4 cycles (Int/FP) 3 to 5 cycles (Int/FP)
L2 cache size 4MB unified direct-mapped 512KB unified 8-way associativity
L2 hit latency 8 cycles 11 to 12 cycles
OS version OSF V5.1 Mac OS X 10.3.9

Pentium 4 - Linux Itanium 2 - Linux
Datapath 32 bits 64 bits
Clock speed 2.0 GHz 1.6 GHz
Register 8 GPR, 8 FPR 128 GPR, 128 FPR
L1 data cache size 8 KB 4-way associative 16 KB 4-way associative
L1 data cache hit latency 2 to 6 cycles (Int/FP) 1 cycle (Int)
L2 cache size 256 KB 8-way associativity 256 KB 8-way associativity
L2 hit latency 7 to 10 cycles 5 to 7 cycles
OS version Red Hat Linux 9.0 Red Hat Enterprise Linux AS4

Table 7: Information about the evaluation platforms

4.2 Baseline Optimizations
On the Alpha-Tru64 Unix platform, we compiled our bench-
mark programs with the DEC-Alpha C compiler V6.5-003
with the “-O3” optimization flag except for clustalw, which
performs better with “-O4”. “-O3” instructs the compiler to
perform global common subexpression elimination, global
code motion, strength reduction, test replacement, split lifetime
analysis, global code scheduling, global inlining, loop unroll-
ing, branch elimination, etc. The “-O4” flag adds software
pipelining, loop vectorization, and more aggressive insertion of
NOP instructions to improve scheduling.

On the PowerPC-Mac OS X and the Intel-Linux platform,
we use the GNU C compiler (gcc) version 3.3.3 with the “-O3”
optimization flag to compile the applications. It performs op-
timizations such as speculative motion of load instructions,
interblock scheduling, basic block reordering, strength reduc-
tion, global common subexpression elimination, inlining,
alignment of loops, functions, jumps, and labels.

On the Itanium-Linux platform, we use the Intel C compiler
version 9.0 with the “-O3” optimization flag to compile the
applications. The optimizations performed are similar to those
of gcc.

In addition to the optimizations listed above, we also use
feedback-directed optimization. On all four platforms, the
smallest input sets are used to generate the feedback informa-
tion. With feedback-directed optimization, we are able to im-
prove the average runtime of our baseline codes by 8%, 4%,
2%, and 2% on the Alpha, Power PC, Pentium, and Itanium
platforms, respectively.

5. Evaluation Results
5.1 Performance with Large Input Sets
This section evaluates the load-transformed version of the ap-
plications when run with large input sets, which correspond to
the class-C input instances and databases in the BioPerf suite.
For hmmsearch, BioPerf only provides small and medium in-
put sets, so we used the large inputs for this program from the
BioInfoMark suite. All load-transformed codes are subject to
the same optimizations (including feedback-directed optimiza-
tion) as the baseline codes (see previous section). All timing
measurements refer to the sum of the user and the system time
as reported by the UNIX shell’s time command.

Table 8 lists the absolute runtime in seconds for the original
and the load-transformed code of the six bioinformatics appli-
cations on our four evaluation platforms. We could not get
dnapenny to compile on the Itanium platform. We note that the
absolute runtimes range from minutes (hmmcalibrate) to over
an hour (clustalw). The corresponding load-transformed code
speedup, including the harmonic mean, is shown in Figure 9.

We find that our source-code modifications provide greater
performance benefits on the Alpha and the Power PC than on
the Pentium 4. There are two reasons for this behavior. First,
the L1 data cache hit latency for integer loads is greater in the
Alpha and Power PC (3 cycles) than in the Pentium 4 (2 cy-
cles). Second, our manual scheduling introduces additional

77

variables, which increase the register pressure. For example,
compare the sequence of machine instructions of the original
and the load-transformed code for hmmsearch in Figure 7. Up
to the first conditional branch in BB1 in Figure 7(a), there are
only three registers defined. Whereas up to the corresponding
conditional move instruction in Figure 7(b) there are seven
registers defined. This can cause register spills in a register-
scarce architecture such as the Pentium 4 (only eight logical
registers), which diminishes the benefit of our scheduling.
Overall, on the large input sets, the load-transformed programs
achieve a harmonic mean speedup of 25.4%, 15.1%, and 4.3%
on the Alpha, the Power PC, and the Pentium 4 machines, re-
spectively.

Alpha Power PC Pentium 4 Itanium
original 86.3 61.7 84.5 n.a.
load-transformed 82.7 56.3 84.5 n.a.
original 2415.8 825.1 1314.0 922.6
load-transformed 2025.2 738.7 1229.2 892.5
original 2461.8 1387.2 1268.5 628.4
load-transformed 1280.9 1089.9 1139.5 490.8
original 63.3 34.4 45.6 15.4
load-transformed 37.7 26.0 43.3 11.9
original 673.7 269.8 389.2 344.2
load-transformed 647.6 266.2 385.6 325.6
original 3692.5 1887.8 1612.4 1142.4
load-transformed 3367.3 1657.1 1580.4 1105.6

predator

clustalw

dnapenny

hmmpfam

hmmsearch

hmmcalibrate

Table 8: Absolute runtime in seconds with the large input sets

Figure 9: Speedup of load-transformed code over the original
code and harmonic mean speedup

On the Itanium, which, unlike the other three platforms, is

an in-order machine, we also see substantial speedups on the
six bioinformatics applications with our transformed code.
Note that the Itanium has only a single cycle L1 cache hit la-
tency and supports speculative and advanced loads in software,
which should allow the compiler to perform load scheduling
the way we propose even without perfect disambiguation in-
formation. Nevertheless, we observe quite a significant
speedup on this platform. The reason is that our scheduling

expands the basic block length and allows more independent
instructions to be issued together in a cycle. There is no specu-
lative element involved. To move loads past a branch on the
Itanium, the compiler has to use control speculation, which
necessitates putting recovery code in place in case of a mis-
speculation. Since the branches in question are hard to predict,
the recovery code is executed quite often, which degrades per-
formance in the baseline case. Note, however, that using the
restrict keyword to indicate that the variables (arrays) in
question are non-overlapping allows the compiler to turn these
speculative loads into non-speculative loads. As a result, the
baseline code with restricts and our load-transformed
code perform similarly. The restrict keyword does not
help on the other three platforms we evaluated.

6. Related Work
Li et al. [14] characterize the bioinformatics applications in the
BioInfoMark suite on an Intel Pentium 4 machine. For the
same applications with the same input sets, the Pentium 4 load
characteristics are quite similar to those of the Alpha (Section
2.1 and 2.2). Their work also covers other characteristics be-
yond what we focus on in this paper.

Golden and Mudge [8] recognize that the data-cache hit la-
tency can adversely affect the performance of a five-stage in-
order pipeline machine and propose a hardware structure called
Load Target Buffer (LTB) to hide the cache hit latency. How-
ever, even with a large LTB, the resulting performance im-
provement is only moderate. Austin and Sohi [2] propose the
idea of zero-cycle loads through a combination of instruction
predecoding, base register caching, and fast address calcula-
tion. Those mechanisms can tolerate the load latency in an in-
order issue machine well, but do not see much benefit in an
out-of-order issue machine. Calder and Reinman [5] survey
speculative techniques for hiding the load latency, namely de-
pendence prediction, address prediction, value prediction, and
memory renaming. They then propose a load speculation
chooser, which outperforms any one of the surveyed tech-
niques in isolation.

We scheduled load instructions at the source code level to
hide the L1 latency. At the machine instruction level, the sub-
ject of scheduling load instructions has been studied exten-
sively. Global instruction scheduling [4], [6] allows loads to be
moved across basic block boundaries. Hardnett et al. [9] pro-
pose a load scheduling algorithm for VLIW machines. To be
able to move a load safely past a store, memory disambigua-
tion must be performed to ensure that there is no dependence
between the load-store pair. This can be done purely in soft-
ware with static compiler analysis or with software-only dy-
namic disambiguation where the compiler inserts disambigua-
tion code in the instruction stream [15]. Yoaz et al. [18] pro-
pose a speculative hardware-assisted technique to handle
memory disambiguation. IA-64 [7] provides hardware-assisted
data and control speculation mechanisms that allow loads to be
safely moved past stores and branches.

78

7. Conclusions
This paper studies the characteristics of load instructions in
selected bioinformatics applications from the BioPerf bench-
mark suite. It shows that their loads, which almost always hit
in the L1 data cache, still represent a serious performance bot-
tleneck. Even in the presence of an out-of-order execution core
and the use of an aggressive optimizing compiler, the two to
three cycle L1 hit latency cannot always be hidden. When we
hid this latency through manual load scheduling at the source-
code level, we obtained substantial performance improve-
ments. The six bioinformatics applications we investigated can
be sped up in this way by 25.4%, 15.1%, 4.3%, and 12.7% on
average on Alpha, Power PC, Pentium 4, and Itanium plat-
forms, respectively. This speedup is achieved over baseline
code that was compiled with the same high optimization level
and with feedback-directed optimization.

8. References
[1] K. Albayraktaroglu, A. Jaleel, X. Wu, B. Jacob, M. Frank-

lin, C.-W. Tseng and D. Yeung, BioBench: A Benchmark
Suite of Bioinformatics Applications, IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), Austin, TX, 2005, pp. 2-9.

[2] T. Austin and G. Sohi, Zero-Cycle Loads: Microarchitec-
ture Support for Reducing Load Latency, Proceedings of
the 28th Annual International Symposium on Microarchi-
tecture, Ann Arbor, MI, 1995, pp. 82-92.

[3] D. A. Bader, Y. Li, T. Li and V. Sachdeva, BioPerf: A
Benchmark Suite to Evaluate High-Performance Com-
puter Architecture on Bioinformatics Applications, IEEE
International Symposium on Workload Characterization,
2005, pp. 163-173.

[4] D. Bernstein and M. Rodeh, Global Instruction Scheduling
for Superscalar Machines, Proceedings of the SIGPLAN
'91 Conference on Programming Language Design and
Implementation, 1991, pp. 241-255.

[5] B. Calder and G. Reinman, A Comparative Survey of
Load Speculation Architectures, Journal of Instruction-
Level Parallelism (2000).

[6] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Water and
W.-m. W. Hwu, IMPACT: An Architectural Framework
for Multiple-Instruction-Issue Processors, Proceedings of
the 18th Annual Int'l Symposium on Computer Architec-
ture, Toronto, Canada, 1991, pp. 266-275.

[7] Intel Corporation, Intel IA-64 Architecture Software De-
veloper's Manual, Santa Clara, CA, 2000.

[8] M. Golden and T. Mudge, Hardware Support for Hiding
Cache Latency, University of Michigan Technical Report
CSE-TR-152-93, 1995, pp. 1-21.

[9] C. R. Hardnett, K. V. Palem, R. M. Rabbah and W.-F.
Wong, Scheduling Load Operations on VLIW Machines,
Georgia Institute of Technology Technical Report GIT-
CC-01-015, Georgia Institute of Technology 2001.

[10] http://developer.apple.com/hardware/ve/g5.html
[11] http://www.intel.com/design/Pentium4/documentation.htm
[12] R. E. Kessler, The Alpha 21264 microprocessor, IEEE

Micro, 1999, pp. 24-36.
[13] Y. Li and T. Li, BioInfoMark: A Bioinformatic Bench-

mark Suite for Computer Architecture Research, Techni-
cal Report, IDEAL Research, ECE Dept, University of
Florida, 2005.

[14] Y. Li, T. Li, T. Kahveci and J. A. B. Fortes, Workload
Characterization of Bioinformatics Applications, IEEE In-
ternational Symposium on Modeling, Analysis, and Simu-
lation of Computer and Telecommunication Systems,
2005, pp. 15-22.

[15] A. Nicolau, Run-time disambiguation: Coping with stati-
cally unpredictable dependencies, IEEE Transactions on
Computers (TOC), 38 (1989), pp. 664-678.

[16] P. Rice, I. Longden and A. Bleasby, EMBOSS: The Euro-
pean Molecular Biology Open Software Suite, Trends in
Genetics, 16 (2000), pp. 276-277.

[17] A. Srivastava and A. Eustace, ATOM: A System for
Building Customized Program Analysis Tools, In Pro-
ceedings of SIGPLAN 1994, pp. 196-205.

[18] A. Yoaz, M. Erez, R. Ronen and S. Jourdan, Speculation
techniques for improving load related instruction schedul-
ing, Proceedings of the 26th Annual International Sympo-
sium on Computer Architecture, 1999, pp. 42-53.

79

